top of page

Through Time Into Healing Brian Weiss Pdf 52: Explore the Mysteries of Reincarnation and the Space B

exfepokuwindo


Extracorporeal shockwave therapy is divided into focused shockwave therapy (FSWT) and radial shockwave therapy (RSWT). In focused shockwave therapy, a pressure field converges into a selected focus frame at specific depths within body tissue. There are three different shockwaves used, including electrohydraulic, electromagnetic, and piezoelectric which are all waves generated in water [5]. Water acoustic wave transduction is very similar to biologic tissue, allowing for comparable signal transduction. Through this engineering method, waves are transferred much easier throughout the body. In radial shockwave therapy, a pressure wave is generated through accelerating a projectile through compressed air until it reaches an applicator, causing it to generate waves throughout the body [5]. In radial therapy, the shockwave dispersion is more superficial while focused therapy penetrates deeper into body tissue. Both modalities of treatment generate different therapeutic effects through pain relief and tissue regeneration.


The first use of ESWT for the treatment of scoliosis was described by Weiss et al. in 2013 through a pilot study of 15 adolescent patients [12]. The rationale of ESWT treatment in this study was directed towards improving impairment of forward flexion (IFF), which is believed to occur over time due to functional tethering of the spinal cord [32, 33]. Tomaschewski et al. previously suggested IFF to be a precursor to structural spinal deformity and subsequent development of severe adolescent idiopathic scoliosis (AIS) [13, 34]. Furthermore, structural and neurological considerations of spinal cord tethering were reported in an MRI study of 81 scoliotic patients by Deng et al., which described lower spinal cord/vertebral length ratios, spinal cord deformity at the apical level of scoliotic curve, and deviation of the spinal cord in the central canal with lateral cord space on the convex side of spinal curvature [13, 33].




Through Time Into Healing Brian Weiss Pdf 52



This guideline is intended for primary care clinicians (e.g., family physicians and internists) who are treating patients with chronic pain (i.e., pain lasting >3 months or past the time of normal tissue healing) in outpatient settings. Prescriptions by primary care clinicians account for nearly half of all dispensed opioid prescriptions, and the growth in prescribing rates among these clinicians has been above average (3). Primary care clinicians include physicians as well as nurse practitioners and physician assistants. Although the focus is on primary care clinicians, because clinicians work within team-based care, the recommendations refer to and promote integrated pain management and collaborative working relationships with other providers (e.g., behavioral health providers, pharmacists, and pain management specialists). Although the transition from use of opioid therapy for acute pain to use for chronic pain is hard to predict and identify, the guideline is intended to inform clinicians who are considering prescribing opioid pain medication for painful conditions that can or have become chronic.


Complete methods and data for the 2014 AHRQ report, upon which this updated systematic review is based, have been published previously (14,52). Study authors developed the protocol using a standardized process (53) with input from experts and the public and registered the protocol in the PROSPERO database (54). For the 2014 AHRQ report, a research librarian searched MEDLINE, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, PsycINFO, and CINAHL for English-language articles published January 2008 through August 2014, using search terms for opioid therapy, specific opioids, chronic pain, and comparative study designs. Also included were relevant studies from an earlier review (10) in which searches were conducted without a date restriction, reference lists were reviewed, and ClinicalTrials.gov was searched. CDC updated the AHRQ literature search using the same search strategies as in the original review including studies published before April, 2015. Seven additional studies met inclusion criteria and were added to the review. CDC used the GRADE approach outlined in the ACIP Handbook for Developing Evidence-Based Recommendations (47) to rate the quality of evidence for the full body of evidence (evidence from the 2014 AHRQ review plus the update) for each clinical question. Evidence was categorized into the following types: type 1 (randomized clinical trials or overwhelming evidence from observational studies), type 2 (randomized clinical trials with important limitations, or exceptionally strong evidence from observational studies), type 3 (observational studies, or randomized clinical trials with notable limitations), or type 4 (clinical experience and observations, observational studies with important limitations, or randomized clinical trials with several major limitations). When no studies were present, evidence was considered to be insufficient. Per GRADE methods, type of evidence was categorized by study design as well as a function of limitations in study design or implementation, imprecision of estimates, variability in findings, indirectness of evidence, publication bias, magnitude of treatment effects, dose-response gradient, and constellation of plausible biases that could change effects. Results were synthesized qualitatively, highlighting new evidence identified during the update process. Meta-analysis was not attempted due to the small numbers of studies, variability in study designs and clinical heterogeneity, and methodological shortcomings of the studies. More detailed information about data sources and searches, study selection, data extraction and quality assessment, data synthesis, and update search yield and new evidence for the current review is provided in the Clinical Evidence Review ( ).


When opioids are reduced or discontinued, a taper slow enough to minimize symptoms and signs of opioid withdrawal (e.g., drug craving, anxiety, insomnia, abdominal pain, vomiting, diarrhea, diaphoresis, mydriasis, tremor, tachycardia, or piloerection) should be used. A decrease of 10% of the original dose per week is a reasonable starting point; experts agreed that tapering plans may be individualized based on patient goals and concerns. Experts noted that at times, tapers might have to be paused and restarted again when the patient is ready and might have to be slowed once patients reach low dosages. Tapers may be considered successful as long as the patient is making progress. Once the smallest available dose is reached, the interval between doses can be extended. Opioids may be stopped when taken less frequently than once a day. More rapid tapers might be needed for patient safety under certain circumstances (e.g., for patients who have experienced overdose on their current dosage). Ultrarapid detoxification under anesthesia is associated with substantial risks, including death, and should not be used (200). Clinicians should access appropriate expertise if considering tapering opioids during pregnancy because of possible risk to the pregnant patient and to the fetus if the patient goes into withdrawal. Patients who are not taking opioids (including patients who are diverting all opioids they obtain) do not require tapers. Clinicians should discuss with patients undergoing tapering the increased risk for overdose on abrupt return to a previously prescribed higher dose. Primary care clinicians should collaborate with mental health providers and with other specialists as needed to optimize nonopioid pain management (see Recommendation 1), as well as psychosocial support for anxiety related to the taper. More detailed guidance on tapering, including management of withdrawal symptoms has been published previously (30,201). If a patient exhibits signs of opioid use disorder, clinicians should offer or arrange for treatment of opioid use disorder (see Recommendation 12) and consider offering naloxone for overdose prevention (see Recommendation 8).


Since the last published version of this document in 2010 [1], the general approach to categorization has not changed, but several new supplements have been introduced to the market and are subsequently reviewed in this article. In this respect, many supplements have had additional studies published that has led to some supplements being placed into a different category or removed from the review altogether. We understand and expect that some individuals may not agree with our interpretations of the literature or what category we have assigned a particular supplement, but it is important to appreciate that some classifications may change over time as more research becomes available.


In addition to the general nutritional guidelines described above, research has also demonstrated that timing and composition of meals consumed may play a role in optimizing performance, training adaptations, and preventing overtraining [2, 25, 40]. In this regard, it takes about 4 h for carbohydrate to be digested and assimilated into muscle and liver tissues as glycogen. Consequently, pre-exercise meals should be consumed about four to 6 h before exercise [40]. This means that if an athlete trains in the afternoon, breakfast can be viewed to have great importance to top off muscle and liver glycogen levels. Research has also indicated that ingesting a light carbohydrate and protein snack 30 to 60 min prior to exercise (e.g., 50 g of carbohydrate and 5 to 10 g of protein) serves to increase carbohydrate availability toward the end of an intense exercise bout [118, 119]. This also serves to increase availability of amino acids, decrease exercise-induced catabolism of protein, and minimize muscle damage [120,121,122]. Additionally, athletes who are going through periods of energy restriction to meet weight or aesthetic demands of sports should understand that protein intake, quality and timing as well as combination with carbohydrate is particularly important to maintain lean body mass, training effects, and performance [25]. When exercise lasts more than 1 h and especially as duration extends beyond 90 min, athletes should ingest glucose/electrolyte solutions (GES) to maintain blood glucose levels, prevent dehydration, and reduce the immunosuppressive effects of intense exercise [40, 123,124,125,126,127,128]. Notably, this strategy becomes even more important if the athlete is under-fueled prior to the exercise task or is fasted vs. unfasted at the start of exercise [68, 69, 129]. Following intense exercise, athletes should consume carbohydrate and protein (e.g., 1 g/kg of carbohydrate and 0.5 g/kg of protein) within 30 min after exercise and consume a high carbohydrate meal within 2 h following exercise [2, 74]. This nutritional strategy has been found to accelerate glycogen resynthesis as well as promote a more anabolic hormonal profile that may hasten recovery [120, 130, 131], but as mentioned above only when rapid glycogen restoration is needed or if the carbohydrate intake in the diet is adequate ( 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page